Archivo de la categoría: Propagación

Actividad Solar (por EA3EPH)

Flujo de plasma procedente del Sol (27MAY14, cortesía SDO-NASA)

A lo largo del ciclo solar, la radiación responsable de la formación de la ionosfera así como el número de manchas presentes en el disco solar es diferente, alcanzándose la máxima actividad solar en los años cercanos a la mitad del ciclo.

Los diferentes fenómenos a los que se conoce en conjunto como actividad solar, normalmente están muy ligados entre sí. Entre ellos, por sus efectos en la ionosfera así como en la propagación HF, destacan principalmente las manchas solares, fulguraciones y eyecciones de la
masa coronal.

La manchas solares son regiones más frías y oscuras que aparecen en la fotosfera, constituyen una de las manifestaciones más evidente de los fenómenos de actividad solar y muy frecuentemente se forman en las regiones activas del Sol, “zonas desde donde emergen campos magnéticos muy complejos e intensos”.

En una mancha solar se distinguen dos regiones: una central, más oscura y de menor temperatura llamada umbra que está rodeada de otra zona menos oscura llamada penumbra, alcanzando ocasionalmente la superficie de ésta hasta alrededor del 80% del total de la mancha.

Las manchas solares pueden tener diferentes tamaños, su duración oscila desde alrededor de una hora en las manchas pequeñas o poros, hasta meses en las manchas grandes.

Cuando las manchas solares son pequeñas o no desarrolladas no se diferencian
las dos regiones en las manchas.

Al inicio del ciclo solar las manchas solares aparecen en latitudes altas de ambos hemisferios, durante el ciclo van cambiando su número forma y dimensiones
desplazándose hacia el ecuador, se sitúan en latitudes medias en fechas de máxima actividad y acaban desapareciendo en latitudes bajas al final del ciclo.

Las fulguraciones son fenómenos transitorios de corta duración que se originan
en las regiones activas del Sol. En una fulguración se da gran liberación de energía, principalmente en forma de radiación y en todo el rango de frecuencias, aunque también en forma partículas atómicas y sus efectos son fuertemente perturbadores en la ionosfera y la
propagación HF.

Dado que la radiación solar tarda alrededor de 8 minutos en alcanzar la Tierra, como primer efecto, unos 8 minutos más tarde tras producirse una fulguración y a consecuencia de la radiación liberada, en la zona en que es de día, esa radiación ocasiona un rápido aumento de la ionización principalmente en las regiones más bajas de la ionosfera D y E, lo cual aumenta fuerte o severamente la absorción de las señales de HF, dependiendo en gran parte de la elevación del Sol y durante cortos plazos de tiempo. Alrededor de unos 30 minutos más tarde, las partículas atómicas, principalmenteprotones y neutrones, pueden alcanzar la ionosfera e incrementa la ionización.

En las eyecciones de la masa coronal, el Sol “expulsa” gran cantidad de “materia” y a gran velocidad que altera e incrementa su continuo viento solar. El viento solar es un plasma muy poco denso, su temperatura es muy elevada, depende del nivel de agitación de sus partículas y dependiendo de la actividad solar, su velocidad oscila entre los 250 km/s y los 900 km/s aproximadamente. Dependiendo de su trayectoria y velocidad, el viento solar alcanza el campo magnético de la Tierra incluso hasta poco más de un día después de producirse una eyección de la masa coronal.

Normalmente, el viento solar no logra penetrar en el campo magnético de la Tierra, sino que lo comprime fuertemente en la zona de día dándose todo lo contrario en la zona de noche, donde se expande. El conjunto de ambas zonas “día/noche” se conoce como la magnetosfera terrestre.

El viento solar arrastra consigo el campo magnético del Sol, conocido también como campo magnético interplanetario y dependiendo de su orientación, hay veces que este afecta a la magnetosfera, ocasionando grandes cambios o alteraciones en el plasma de ésta, dando origen a las conocidas tormentas geomagnéticas, las cuales afectan más o menos fuertemente a la ionosfera así como a la propagación HF dependiendo de su nivel o intensidad.

Resumiendo:

Nacen en los extremos,
crecen al desplazarse
se dirigen hacia el centro
siempre desde ambas partes.
Cada una que aparece,
lo primero es registrada
siguiendo su evolución
día a día es observada.
Quizás cuestión de paciencia,
a veces el Sol se enfada
apretando las narices
y hasta cambiando su cara.
Son cambios de su carácter,
su viento y su radiación
afecta a la ionosfera
también la propagación.
Día a día sin cesar,
esos datos son guardados
estando siempre pendientes
de qué es lo que está pasando.

Alonso Mostazo (EA3EPH)

Share Button

Ejercicio GlobalSET 2014 – Estudio de Circuitos HF para Europa

Como viene siendo habitual, Alonso Mostazo (EA3EPH) ha elaborado las predicciones de propagación en HF para el Ejercicio GlobalSET 2014, que tendrá lugar el día 23NOV14 auspiciado por la Unión Internacional de Radioaficionados (IARU).

Actualización: Los cálculos están referidos a enlaces en Europa centrados en Londres, ubicación de la Estación HQ de la Región 1 (GB4NRC), considerando un índice de flujo solar (SFI) estimado de 165. Se ofrecen estimaciones tanto de la frecuencia óptima de trabajo (FOT) como de la máxima frecuencia utilizable (MFU), a distancias de 100, 300, 600, 1200, 1800, 2400 y 3000 km desde Londres (UK). Los valores están expresados en MHz.

Enlaces a 100 km

UTC FOT MFU
00 3.3 3.9
02 3.4 4.0
04 3.6 4.3
06 3.8 4.5
08 8.7 10.3
10 9.2 10.8
12 9.4 11.0
14 9.2 10.8
16 8.7 10.3
18 3.8 4.5
20 3.6 4.3
22 3.4 4.0

Enlaces a 300 km

UTC FOT MFU
00 3.5 4.2
02 3.7 4.3
04 3.9 4.6
06 4.1 4.9
08 9.4 11.0
10 9.9 11.6
12 10.1 11.9
14 9.9 11.6
16 9.4 11.0
18 4.1 4.9
20 3.9 4.6
22 3.7 4.3

Sigue leyendo

Share Button

Planificación de enlaces radio en la banda de HF (Memorial del Arma de Ingenieros nº92)

La Secretaría General Técnica del Ministerio de Defensa acaba de publicar el nº92 del Memorial del Arma de Ingenieros, correspondiente a Julio de 2014, que incluye mi artículo “Planificación de enlaces radio en la banda de HF” en las páginas 29-45.

Las comunicaciones por radio en la banda de HF están experimentando un nuevo auge que en parte se debe a la aparición de nuevos modos de transmisión que facilitan enormemente la tarea de los operadores. No obstante, sigue siendo responsabilidad de los planificadores la elección de las frecuencias más adecuadas para trabajar en cada franja horaria en el transcurso de una operación.

En este artículo se expone una metodología para la planificación de frecuencias en la banda de HF, considerando la topología de la malla, sus parámetros técnicos, las condiciones de propagación ionosférica y las bandas de trabajo en las que existen atribuciones de frecuencias para operar.

Enlace: “Planificación de enlaces radio en la banda de HF”. Memorial del Arma de Ingenieros nº92, pp.29-45 (pdf, 1,8 MB).

Enlace: “Memorial del Arma de Ingenieros nº92″ completo (pdf, 29,3 MB).

Share Button

Modelo de propagación NVIS: estudio de un caso práctico

Este artículo, rescatado del número 39 del “Memorial del Arma de Ingenieros” del año 1990, es la continuación del artículo “Propagación NVIS: estudio y experiencias” difundido en el número 37 de la misma publicación, siendo el mismo autor el entonces Capitán Don Julián Iranzo Collado, del Regimiento de Transmisiones Tácticas nº21 del Ejército de Tierra español, quien amablemente me ha autorizado de nuevo a reproducirlo íntegramente en la web.

En esta nueva entrega se exponen y analizan los resultados obtenidos en el despliegue de una red militar de comunicaciones por radio en HF durante la maniobra “CAZADOR-88”, empleando el modo de propagación NVIS (Near Vertical Incident Skywave). La Red estaba formada por varias estaciones repartidas en diversos asentamientos de la zona de Andalucía, entre las cuales existía una orografía complicada que dificultaría enormemente el establecimiento de enlaces en la banda de VHF.

En el artículo se exponen todas las fases de la operación, comenzando por la planificación de frecuencias apoyada en el antiguo software PROPHET sobre Amstrad 1512, el cálculo de los ángulos de despegue necesarios y por ende de la altura de las antenas dipolo sobre el suelo y finalmente la ejecución de los enlaces a diferentes horas del día.

En el apartado final se ofrecen unas interesantisimas conclusiones operativas sobre los rangos de frecuencias de trabajo recomendados para trabajar en NVIS, la forma de instalar las antenas y diversas posibilidades de explotación, que nuevamente tienen cabida tanto en el ámbito militar como en el de las comunicaciones de emergencia.

Quisiera agradecer nuevamente a su autor la autorización para publicar los artículos en la web.

Enlace: “Modelo de propagación NVIS: estudio de un caso práctico”.

Share Button

La Ionosfera (y IV): Variaciones regulares de la Ionosfera

Cuarta y última entrega de una serie de 4 artículos de Alonso Mostazo Plano (EA3EPH) sobre la ionosfera.

La radiación solar responsable de la formación de la ionosfera es continuamente variable en su intensidad dada la evolución de la actividad solar, así como en los ángulos al alcanzar la ionosfera dado el movimiento de la Tierra. En una u otra fecha, la ionización y recombinación también van cambiando a lo largo del año, en en el que las variaciones regulares de la ionosfera pueden dividirse en: diarias, estacionales, geográficas y cíclicas.

Diarias

Las variaciones diarias son debidas a la continua diferencia de elevación del Sol durante el día por el movimiento de rotación de la Tierra. En éstas, destaca la evolución de la ionosfera en las regiones más bajas D y E que comienzan a formarse en horas cercanas al orto y desaparecen en horas cercanas al ocaso.

Por encima, en las regiones F1 y F2 la ionización es variable a lo largo del día conforme la elevación de Sol es mayor o menor.

Estacionales

Las variaciones estacionales son consecuencia de que la evolución de la ionosfera en una u otra estación del año es diferente durante el día, así como en las noches. En ambos hemisferios, durante los días de primavera/verano, en alturas de la región E, se registran frecuentemente ionizaciones esporádicas.

Por encima de la región E, en horas cercanas al amanecer, comienza a formarse la región F1 en la que la ionización es persistente a lo largo del día, disminuye lentamente conforme la elevación del Sol es menor y desaparece en horas cercanas al ocaso.

Durante las noches, debido a la menor duración de éstas, así como a una recombinación más lenta y menor, la ionización de la región F es mayor.

Durante los días de otoño/invierno en ambos hemisferios, normalmente se alcanza una ionización menor, salvo los días de invierno del hemisferio Norte.

Geográficas

Las variaciones geográficas son debidas al comportamiento de la ionosfera en una u otra latitud de ambos hemisferios. En fechas en las que el Sol se encuentra muy cerca del Ecuador o la declinación es mínima, la ionización es muy parecida desde latitudes altas de ambos hemisferios. Si descendemos desde ambos polos hasta el Ecuador, normalmente la ionización es mayor conforme la latitud es menor, hasta alrededor de los 20ºN /20ºS, donde ésta es máxima.

En latitudes inferiores, donde la radiación del Sol es casi perpendicular durante todo el año, aunque la ionización desciende muy levemente, ésta es muy alta durante el día, se registran fuertes y persistentes ionizaciones esporádicas, así como una recombinación mucho más lenta en la noche.

En las zonas polares de ambos hemisferios, principalmente debido a las tormentas de radiación solar “también conocidas” como eventos de partículas solares o de protones, pueden ionizarse muy fuertemente las zonas más bajas de la ionosfera, afectando severamente a las señales de HF, efecto que se conoce como “Absorción en el Casquete Polar”. Durante las noches de invierno, la ionización es muy baja e incluso insuficiente para devolver a Tierra señales del rango de HF, aunque en latitudes tan altas existen otras
causas de ionización ajenas a la radiación solar.

Cíclicas

A lo largo del ciclo solar la actividad solar es diferente en uno u otro momento, su duración es de alreredor de 11 años, aunque no exactamente, habiéndose registrado ciclos de más o menos duración, así como de mayor o menor actividad solar.

La actividad solar máxima se registra en fechas cercanas a las mitad del ciclo o poco después y, día a día, desde diferentes estaciones de la Tierra se toman medidas del flujo de radiación en diferentes frecuencias. Una de las frecuencias en las que se toma medida es la de 2800 MHz y dado un paralelismo, éste es el que mejor indica el nivel de radiación ultravioleta, responsable de la formación de la ionosfera en las regiones más altas F1 y F2 que hacen posible los comunicados o circuitos HF largos.

Autor: Alonso Mostazo Plano (EA3EPH).

 

Share Button

Propagación NVIS: Estudio y Experiencias

Acabo de rescatar, con permiso de su autor, un interesante documento publicado en el número 37 de la revista “Memorial del Arma de Ingenieros”, del año 1989. Se trata del artículo “Propagación NVIS: Estudio y Experiencias”, escrito por el entonces Capitán Don Julián Iranzo Collado, del Regimiento de Transmisiones Tácticas nº21 del Ejército de Tierra español. El “Memorial del Arma de Ingenieros y Revista Científico-Militar” es una de las publicaciones técnicas más antiguas de España con continuación en la actualidad, datando su primer número del año 1846 y con reconocido prestigio a nivel europeo. La revista fue fundada por el Ingeniero General D. Antonio Remón Zarco del Valle y Huet, con la finalidad de difundir entre los Oficiales del Cuerpo aquellos estudios y conocimientos que más les podían interesar y al mismo tiempo, darles facilidades para que el resultado de sus trabajos y el fruto de su experiencia fueran conocidos.

Se difunde desde el año 1999 en formato digital y el Ministerio de Defensa ha realizado el esfuerzo de digitalizar los números publicados entre 1846 y 1936, disponibles a través de la Biblioteca Virtual de Defensa (BVD). El artículo que nos ocupa, datado en 1989, no está por tanto disponible de momento en la BVD y considero del máximo provecho rescatarlo no solamente por su interés histórico sino también por su interés técnico derivado del resurgir actual de las comunicaciones por radio en HF, tanto en entornos militares como de comunicaciones de emergencia.

En el artículo se exponen los resultados de un experimento de propagación NVIS (Near Vertical Incident Skywave) realizado en el año 1987, durante las Escuelas Prácticas de Transmisiones GAMO-87 en las provincias de Guadalajara y Madrid, en el que se utilizan estaciones de comunicaciones de los tipos MERCURIO-A y MERCURIO-B dotadas con radios de HF y antenas dipolo horizontales instaladas a diferentes alturas sobre el suelo, con el objetivo de evaluar las características de radiación de las mismas. Las pruebas se apoyan además en el uso de un radiogoniómetro para evaluar tanto los patrones de radiación como las posibilidades de evasión de las estaciones NVIS ante la radiolocalización.

En las conclusiones quedan patentes las posibilidades de este modo de propagación de HF para establecer comunicaciones fiables más allá del alcance de la onda de tierra y cubriendo el hueco de unos 200 km de la primera zona de salto, típica de las comunicaciones ionosféricas de media y larga distancia. Se evalúan los resultados de operar con antenas dipolo ajustadas para frecuencias comprendidas en el rango entre 3,5 MHz y 8 MHz e instaladas a diferentes alturas sobre el suelo, planteándose además varios posibles escenarios operativos de uso.

Los resultados son completamente extrapolables para su uso actual tanto en entornos militares como de comunicaciones de emergencia, considerando que algunas de las conclusiones tendrán una aplicación diferente dependiendo del escenario. Por ejemplo, los consejos relativos a obtener una baja probabilidad de interceptación en un entorno militar con presencia de medios hostiles ESM, mediante la supresión de la onda de tierra aprovechando la orografía, serían justo los opuestos en un entorno de comunicaciones de emergencia, donde se pretendería maximizar los alcances tanto por onda de tierra como por onda ionosférica. Del mismo modo, la parte relativa a las dificultades de establecimiento de marcaciones radiogoniométricas de este tipo de emisiones también puede ser muy interesante desde el punto de vista de la localización de embarcaciones en peligro en el mar.

Aprovecho para agradecer a su autor la autorización para publicar el artículo en la web.

Enlace: “Propagación NVIS: Estudio y Experiencias”

Share Button

La Ionosfera (III): Estructura de la Ionosfera

Tercera entrega de una serie de 4 artículos de Alonso Mostazo Plano (EA3EPH) sobre la ionosfera.

Aproximadamente a partir de los 65 Km de altura comienza una zona de la atmósfera en la que los diferentes elementos que hay en ella son o están ionizados a causa de la radiación solar principalmente: la ionosfera.

Capas de la atmósfera (Cortesía: NASA Heliophysics: Near-Earth Space Fun Facts).

Conforme se gana altura la ionización es creciente, con cierta variabilidad y hasta alcanzar la altura en la que esa ionización o densidad electrónica es máxima. Aunque desde el rango de HF la ionosfera es aprovechable principalmente desde alrededor de los 95 Km, desde su inicio y hasta la altura en la que alcanza esa máxima densidad electrónica, en la ionosfera se diferencian las siguientes regiones, zonas o capas:

Zona o capa D.

Es la más cercana a la Tierra, en la que mayor presión se da y su altura está comprendida entre los 60 Km y 95 Km aproximadamente. Esta región se forma únicamente durante el día y en ella los rayos X, así como diferentes reacciones fotoquímicas, son los que ionizan principalmente el O2 y el monóxido de nitrógeno NO.

Para las señales de HF, su principal característica es la absorción y aunque ésta afecta principalmente a las frecuencias bajas, dependiendo de determinada actividad solar, hay veces que no sólo afecta también a frecuencias más altas, sino que incluso es la responsable de los conocidos apagones de radio.

Zona o capa E.

También conocida como la capa Kennelly-Heaviside, está situada por encima de la zona D y como ésta, también es diurna. Su altura máxima alcanza alrededor de los 140 Km o “poco más” en horas cercanas al orto/ocaso, su máxima densidad electrónica se mantiene bastante estable a lo largo del día entre los 100 Km y 130 Km aproximadamente y en ella, la radiación ultravioleta así como los rayos X son los que ionizan elementos como el O2, O y NO. Esta zona es la responsable de devolver a Tierra señales oblicuas de HF de hasta
alrededor de los 8 MHz.

Zona o capa F.

También conocida como la capa Appleton, es la más alta, extensa y en la que mayor densidad electrónica se da y ésta se registra muy por debajo de donde acaba la ionosfera. Principalmente en primavera/verano y durante el día se divide en dos capas, “F1 y F2” y en los días de invierno, en horas cercanas al mediodía, hay veces que F1 se
forma o “aparece”, pero durante muy poco tiempo.

En dichas zonas, los principales elementos ionizados son el N2, NO y O en F1, así
como el O y N en F2 y de ello es responsable principalmente la radiación ultravioleta.

La altura mínima de F1 comienza cerca de los 144 km y llega hasta alrededor de los
240 km y por encima de ella, comienza la región F2 que alcanza esa máxima densidad electrónica alrededor de los 350 Km durante el día y con cierta variabilidad.

Al anochecer, la altura en la que comienza la región F, así como en la que alcanza su
máxima densidad electrónica la ionosfera normalmente es mayor y va ascendiendo despacio a lo largo de la noche, alcanzando la máxima densidad electrónica alrededor de los 450 km y aunque la ionosfera aún se extiende a mucha más altura, la ionización o densidad electrónica es menor conforme se asciende y hasta desaparecer.

Debido a la recombinación y principalmente desde horas cercanas al ocaso, la densidad electrónica o ionización va descendiendo y fuertemente en las noches de invierno, en las que incluso en latitudes altas desaparece o es insuficiente para devolver a la Tierra señales del rango de HF.

En las noches de primavera/verano la recombinación es menor, más lenta y aún mucho más en latitudes bajas o ecuatoriales durante todo el año. Las señales oblícuas que son devueltas a Tierra desde la zona F2 son las responsables de comunicados o circuitos HF largos y en latitudes medias, el valor de dichas señales oscila entre los 17 MHz y 35 MHz e incluso superiores, según fechas de baja o alta actividad solar.

Igualmente, en la noche y latitudes medias, dependiendo del nivel de actividad solar, desde la región F son devueltas a Tierra señales que oscilan aproximadamente entre los 10 MHz y 21 MHz.

Autor: Alonso Mostazo Plano (EA3EPH).

Share Button

La Ionosfera (II): Formación de la Ionosfera

Segunda entrega de una serie de 4 artículos de Alonso Mostazo Plano (EA3EPH) sobre la ionosfera.

La atmósfera de la Tierra está formada por diversos gases y durante el día, aproximadamente por encima de los 60 Km, la radiación solar en determinadas frecuencias ioniza los elementos que encuentra a su paso, pero además ocurre también el efecto contrario, la recombinación. A partir de esa altura, esa constante oposición entre ionización y recombinación es la que da origen a una variabilidad ya que ambas dependen de la altura, latitud y hora del día.

La ionización es el proceso por el cual un átomo o molécula son desequilibrados, convirtiéndose en portadores de una carga eléctrica positiva al perder uno o más electrones y cargándose positivamente, o bien por ganar uno o más electrones y cargándose negativamente.

La energía necesaria para extraer un electrón de un átomo o molécula es diferente, cuanto más cercano está el electrón al núcleo, mayor es la energía necesaria para extraerlo, por lo que la energía de ionización a menudo se refiere a la energía necesaria para arrancar un electrón de los más externos y dicha energía es diferente para uno u otro elemento, conociéndose como electrón libre aquél que ha sido arrancado del átomo o molécula.

Aurora Boreal fotografiada desde la ISS en 2011

Aurora Boreal fotografiada desde la Estación Espacial Internacional en 2011 (Imagen: NASA)

En la ionosfera son varios elementos los que son ionizados, como el nitrógeno y oxígeno molecular N2 y O2 o el oxígeno monoatómico O, juntos forman una mezcla de partículas cargadas eléctricamente en la que la carga negativa total es igual en módulo a la carga positiva, dicha mezcla se conoce con el nombre de plasma que es un estado de la materia altamente ionizado en el que el número de electrones libres es aproximadamente igual al número de iones positivos y de ello es responsable la radiación ultravioleta en las zonas medias y altas, así como los rayos X en las zonas más bajas.

Debido a que los electrones tienen propiedades para transportar la carga eléctrica y ésta se manifiesta a través de fuerzas de atracción o repulsión, se ocasionan desplazamientos o movimientos que dan origen a corrientes en la ionosfera, pero al estar además bajo el efecto  del campo magnético de la Tierra, así como de la actividad solar, el movimiento de dichas cargas es mucho más complicado.

En general, a lo largo del día se da constantemente una ionización que va en aumento desde  poco antes de amanecer hasta horas cercanas al mediodía “aunque no exactamente” y después comienza a darse mayormente el efecto contrario, la recombinación.

La recombinación es proceso en el que cada átomo o molécula recupera a los electrones, ésta alcanza su máximo a lo largo de la noche, es más rápida en latitudes altas, menor en las  noches de primavera/verano en una u otra latitud y siempre más lenta en latitudes bajas, aunque con diferencias en una u otra fecha.

Además y al margen de la radiación solar, hay un par de “causas” de ionización aprovechables desde la Radioafición:

1/-Al entrar en la atmósfera meteoros y debido al fuerte rozamiento, originan gran desprendimiento de energía que llega a ocasionar ionización en las zonas afectadas, aunque durante muy cortos plazos de tiempo.

2/-Debido a movimientos anormales que a veces realizan los iones, choques de las moléculas del viento neutro dado en la ionosfera, así como la interacción del campo magnético, a veces se ocasionan acumulaciones de iones mayormente en alturas comprendidas entre los 100Km y 140 Km aproximadamente que conocemos como ionización  esporádica, una variación “irregular” de la ionosfera que cambia sus propiedades rápidamente, se da con más frecuencia en primavera/verano en latitudes medias y tiene características de su formación diferentes en latitudes altas, medias y bajas.

En menos letras:

Debido a la radiación,
los elementos son afectados
por diferentes frecuencias
quedan desequilibrados.
Todo es cosa de energías,
hay un constante reajustar
en busca del equilibrio
poco a poco, sin parar.
Mientras tanto esas señales,
unas vienen y otras van
y en una u otra frecuencia
nunca dejan de informar.
Todo depende de todo,
hay continuas variaciones
uno u otro parámetro
va cambiando sus valores.
Todos juntos limitan,
día a día sin cesar
muy despacio y con cuidado
qué frecuencia utilizar.

Autor: Alonso Mostazo Plano (EA3EPH).

Share Button

La Ionosfera (I): El Sol y su radiación

Primera entrega de una serie de 4 artículos de Alonso Mostazo Plano (EA3EPH) sobre la ionosfera.

Como sabemos, el Sol es la estrella más cercana a la Tierra, su masa es 332.946 veces superior a la de nuestro planeta, su brillo es consecuencia de las reacciones nucleares que tienen lugar en su denso núcleo, región se extiende aproximadamente hasta 1/4 de su radio, su movimiento de rotación es más rápido en la zona ecuatorial (donde da una vuelta cada 25 días) que en los polos, donde el giro de su masa se produce cada 34 días y su atmósfera se compone de tres capas principales: la fotosfera, la cromosfera y la corona, siendo éstas dos últimas más externas y visibles durante los eclipses de Sol.

La actividad solar varía lentamente y se caracteriza principalmente por la formación de las manchas solares, protuberancias, filamentos en la corona, así como fulguraciones y chorros coronales, fenómenos de actividad que obedecen a leyes de frecuencia, latitud y polaridad magnética, características de los ciclos solares y aunque su duración es aproximadamente de 11 años, se han registrado ciclos de mayor, así como de menor duración.

Imagen del Sol en UV extremo tomada por la sonda Solar Dynamics Observatory en Mayo de 2012 (Cortesía NASA/SDO)

La radiación solar está compuesta por ondas y su análisis puede revelar gran información acerca de las propiedades físicas del Sol, además, en determinadas longitudes de onda, no sólo es la responsable de la formación de la ionosfera, sino que en razón a los cambios que ocasiona en ésta, también afecta fuertemente a la propagación HF y en dicha radiación, además de las ondas de radio, podemos distinguir por su longitud de onda:

  • Rayos X duros, con una longitud de onda inferior a 10 nanometros (nm).
  • Rayos X blandos, con una longitud de onda comprendida entre 10 y 30 nm.
  • Extrema Ultravioleta, con una longitud de onda entre 30 y 120 nm.
  • Ultravioleta, con una longitud de onda entre 120 y 400nm.
  • Visible, con una longitud entre 400 y 700nm.
  • Infrarroja, con una longitud de onda entre 700 nm y 1 mm.

Desde diferentes estaciones de la Tierra, diariamente se toma medida de la radiación solar en determinadas frecuencias y entre ellas del flujo Solar de 2.800 MHz (10,7 cm de longitud de onda) que se considera es el índice que mejor indica la intensidad de la radiación  ultravioleta (principal responsable de la formación de la ionosfera en zonas medias y altas) y el valor de éste es “proporcional” al número de Wolf (número relacionado con la cantidad de manchas presentes en la superficie del Sol), pero dado que los altibajos que se dan en día a día en ese flujo son menores, es por ello una cifra más estable.

A lo largo de un ciclo solar, las manchas solares se desplazan constantemente sobre el disco solar desde latitudes altas a latitudes bajas en ambos hemisferios y cada ciclo sigue una ley de polaridad inversa al anterior, conociéndose como “Constante Solar” a la cantidad total de energía por segundo para todas las longitudes de onda que se recibiría en la parte superior de la atmósfera terrestre cuando la Tierra está situada a su distancia media del Sol, siendo su valor de unos 1.370 W/m2.

La mayor parte de la radiación solar es emitida en la parte visible del espectro y en el infrarrojo cercano al mismo, la radiación ultravioleta es aproximadamente un 1% del total y todas las demás longitudes de onda lo hacen con una pequeñísima fracción de otro 1%.

Autor: Alonso Mostazo Plano (EA3EPH).

Share Button

Análisis de la fiabilidad de las predicciones de VOACAP para el ejercicio GlobalSET 2013

iaru_logoEl pasado 13ABR13 tuvo lugar la primera sesión del ejercicio internacional de comunicaciones de emergencia GlobalSET APR 13, para el que elaboré unas predicciones de propagación en HF utilizando el software VOACAP, considerando circuitos originados en Madrid.

A partir de los datos recopilados en los contactos realizados en esa primera sesión, en este post se analiza la fiabilidad de las predicciones realizadas.

Banda de 40 m

En la banda de 40 m se realizaron contactos nacionales con las estaciones EB5TT (Benidorm, 09:15z), EB1CU (Castro Urdiales, 10:05z), EA1RAG (Valladolid, 10:30z) y EA7URU (Cádiz, 12:05z).

En la fig.1 se muestran los contactos en torno a las 10:00z. En todos los casos la calidad observada fue muy buena (RS 59), correspondiéndose con valores de SNR previstos por VOACAP superiores a 55 dB.

Fig.1. Contactos desde Madrid en la banda de 40 m en torno a las 10:00 UTC

En la fig.2 se muestra el contacto realizado en torno a las 12:00 UTC, con muy buena calidad y que se corresponde con una SNR superior a 55 dB.

Fig.2. Contactos desde Madrid en la banda de 40 m en torno a las 12:00 UTC

Banda de 20 m

En la banda de 20 m se realizaron contactos internacionales con la estación T70A (San Marino, 09:25z) y con la Estación HQ de IARU-R1, GB4NRC (UK, 11:50z y 13:07z).

En la fig.3 se muestra el primero de los contactos, sobre el mapa de predicción correspondiente a las 10:00z. El contacto fue de buena calidad (RS 59) y se corresponde con una SNR superior a 45 dB en la predicción de VOACAP.

Fig.3. Contactos desde Madrid en la banda de 20 m en torno a las 10:00 UTC

En la fig.4 se muestran los contactos con GB4NRC, en torno a las 12:00z. Los contactos fueron de buena calidad (RS 58), aunque se observaron algunos periodos de QSB. En VOACAP, la SNR prevista era superior a 45 dB.

Fig.4. Contactos desde Madrid en la banda de 20 m en torno a las 12:00 UTC

Sigue leyendo

Share Button