Archivo de la categoría: Radionavegación

Efectos de la nube de ceniza volcánica en los sistemas de radiocomunicaciones

El volcán islandés Eyjafjallajökull entró en erupción el pasado 14/10/2010, generando una nube de ceniza volcánica que se propagó por el norte y el centro de Europa los días siguientes, provocando el caos en el tráfico aéreo de la zona.

En este post se analiza el posible impacto de la nube de ceniza volcánica en los sistemas de comunicaciones por radio. Las partículas de la nube volcánica están cargadas eléctricamente y se ubican a una altitud aproximada de 3 km, luego afectarán en mayor o menor medida a dichos sistemas.

Dependiendo de la banda, el problema puede analizarse de una forma u otra.

Para la banda de HF, interesaría aproximar la nube de ceniza por un plasma, similar a la ionosfera. La concentración de partículas cargadas no es demasiado elevada, ya que la nube es cada vez menos densa conforme avanza y se dispersa por el viento. El resultado es que las comunicaciones en HF no parecen verse afectadas, como puede comprobarse en la siguiente gráfica obtenida de la ionosonda de Chilton, en Inglaterra (51.5 N, 0.6 W).

La gráfica muestra la frecuencia de corte de la capa F2 de la ionosfera para sondeo vertical, entre los días 12/04/2010 y 20/04/2010. El volcán entró en erupción el 14/04/2010 y la nube tardó unos días en propagarse por Europa. En las medidas no se aprecia ninguna variación.

Sí pueden afectar las descargas eléctricas en la nube, similares a los rayos de toda la vida, en forma de ruido puntual en la banda de HF.

Para las bandas de VHF y superiores, creo que la mejor aproximación es la teoría del radar. La nube de ceniza volcánica puede caracterizarse por su “sección recta radar” (RCS). Cuanto mayor sea su RCS, mayor reflexión de las ondas de radio. La RCS depende del área geométrica de la nube, del diámetro y forma de sus partículas y de su reflectividad.

Cuanto más dispersa esté la nube, menor será su reflectividad, luego conforme nos alejemos del volcán su efecto será menor.

Respecto a las frecuencias afectadas, las partículas de la nube parecen tener un tamaño del orden de los milímetros, luego afectarán en mayor medida a la banda de EHF (30-300 GHz). No obstante, en puntos donde la nube sea más densa y las partículas se agrupen con tamaños cercanos al centímetro, también se vería afectada la banda de SHF (3-30 GHz).

Los efectos serían principalmente un aumento de la absorción (fading) y de la dispersión (scattering) y podrían llegar a afectar a algunos sistemas de comunicaciones por satélite. No obstante, los sistemas normalmente utilizados en comunicaciones de emergencia, como INMARSAT, Iridium y Thuraya trabajan en bandas más bajas, por lo que no se prevé ningún tipo de afectación.

En mi opinión, las bandas de VHF y UHF solamente se verían afectadas en zonas muy próximas al volcán y aún así se trata de una cuestión difícil de predecir.
Referencias:

USGS – Volcanic Ash – Effects on Communication and Mitigation Strategies

USGS – Ash Fall – A “Hard rain” of Abrasive Particles

NASA – NASA Observes Ash Plume of Icelandic Volcano

Pulse en las imágenes para verlas a tamaño completo.

Share Button

Plan Estatal de Protección Civil ante el riesgo sísmico

Se acaba de publicar la Resolución de 29 de marzo de 2010, de la Subsecretaría del Ministerio del Interior, por la que se publica el Acuerdo de Consejo de Ministros de 26 de marzo de 2010, por el que se aprueba el Plan Estatal de Protección Civil ante el Riesgo Sísmico. Puede descargarse desde este enlace del BOE y creo que es de obligada lectura para todos los que estamos interesados en estos temas o simplemente para el que tenga curiosidad por conocer la organización de las telecomunicaciones de emergencia a nivel estatal en España.

Dentro del Plan Estatal se definen varios planes específicos, entre los que lógicamente figura el de telecomunicaciones:

Telecomunicaciones.–Uno de los servicios que suelen verse afectados por los terremotos es el de las telecomunicaciones basadas en soportes fijos que pueden quedar anuladas o seriamente dañadas. Esto es tanto más importante en cuanto las telecomunicaciones deben asumir un papel fundamental en la gestión de la emergencia, interrelacionando a todos los órganos que constituyen la estructura operativa prevista en el presente Plan.”

En el Anexo III del Plan se define la base de datos sobre medios y recursos movilizables ante el riesgo sísmico, que hace mención expresa a los siguientes medios de telecomunicaciones:

1.1.4.2 – Especialistas en comunicaciones.
1.1.4.3 – Especialistas en informática.
1.4.4 – Radioaficionados.
2.3.6.7 – Material de comunicaciones.
2.3.6.7.1 – Vehículos de comunicaciones de emergencia.
2.3.6.7.2 – Sistemas de restablecimiento de telefonía.
2.3.6.7.3 – Repetidores transportables sintetizados de VHF.
2.3.6.7.4 – Repetidores transportables sintetizados de UHF.
2.3.6.7.5 – Equipos transportables de comunicación via satélite.
2.3.6.7.6 -Transceptores sintetizados de VHF portátiles.
2.3.6.7.7 – Transceptores sintetizados de UHF portátiles.
2.3.6.8.1- Equipos de GPS (sistemas de posicionamiento por satélite).

En el Anexo IV (Telecomunicaciones y Sistemas de Información) del Plan se incluyen las características de los sistemas de telecomunicaciones que está previsto utilizar, aplicados fundamentalmente al caso en que la situación, por su intensidad y extensión, haya sido declarada de interés nacional por el Ministro del Interior. Por su especial interés, se reproduce aquí íntegramente:

1. Telecomunicaciones para la dirección y coordinación de las operaciones de emergencia.
1.1 Requisitos.–En las operaciones en situaciones de emergencia provocadas por un terremoto, particularmente cuando su intensidad y extensión hacen necesaria la declaración de interés nacional, se añade a la gran diversidad de organismos y entidades intervinientes, un escenario en el que las telecomunicaciones basadas en soportes fijos pueden quedar anuladas o seriamente dañadas, lo que dificultaría, si no impediría, la dirección de las operaciones.
Además, es necesario que los medios de Mando y Control presentes en la zona de la emergencia faciliten la obtención de una visión integrada de la emergencia, es decir, la síntesis de la situación en tiempo oportuno, integrando sucesos con medios de cualquier administración u organismo desplegados, con el fin de tomar decisiones.
Por todo ello, se necesita disponer de medios y procedimientos que permitan, en todo tiempo, contar con información precisa y fiable para:

  • Conocer cómo evoluciona la emergencia.
  • Identificar la disposición de los medios pertenecientes a los organismos que intervienen (Unidad Militar de Emergencias, Fuerzas y Cuerpos de Seguridad, bomberos, servicios sanitarios, etc.) desplegados en la zona de emergencia.
  • Controlar la actividad de los medios externos.
  • Conocer cómo evoluciona cualquier despliegue/disposición.
  • Evaluación de la situación (daños, heridos, nuevos riesgos, etc.) en cada momento.
  • La toma de decisiones permanente y la evaluación de resultados.

Estos condicionantes y la posibilidad de carecer de medios de Mando y Control basados en instalaciones fijas, obligan a emplear sistemas desplegables de telecomunicaciones y de Mando y Control. Estos sistemas han de permitir la integración de alertas y sistemas de conducción, la dirección centralizada y la gestión de medios de forma descentralizada, por lo que han de ser adaptables, modulares y escalables en cualquier situación en Zonas de Emergencias e interoperables con los sistemas, civiles y/o militares, de los organismos implicados en la emergencia.

Por otra parte, los sistemas desplegables han de integrarse en las redes de telecomunicaciones permanentes manteniendo su capacidad de ser desplegados en Zonas de Emergencias, permitiendo la materialización de una red propia de emergencias para operaciones en los entornos desplegables (Radiocomunicaciones HF/VHF/UHF, PMR, etc.).

Por último, los sistemas de telecomunicaciones deben estar preparados para dar soporte al manejo de cantidades considerables de información y soportar comunicaciones de voz, datos, FAX, mensajería y videoconferencia.

1.2. Arquitectura de las telecomunicaciones en emergencias de interés nacional.–Sobre la base de los requisitos de dirección centralizada y la gestión de medios de forma descentralizada, se establecerá una estructura de nodos con diferentes niveles en función de su capacidad para participar en la gestión de emergencias. Un nodo es una entidad tipo Puesto de Mando con capacidad para ejercer el Mando y Control de la fuerza asignada y, normalmente, la gestión de emergencias.

En el caso de una emergencia declarada de interés nacional en la que no se puedan emplear los medios sobre infraestructura fija por haber sido dañados o inutilizados, los nodos a emplear serán los que actualmente dispone la UME y los medios de telecomunicaciones desplegables, tanto de la Administración General del Estado como de las Administraciones de las Comunidades Autónomas y otros organismos y empresas relacionados con la gestión de emergencias.

Los nodos de la UME, tanto en sus emplazamientos fijos como los que despliega en la zona de emergencia, incorporan integradores de comunicaciones que garantizan a los distintos actores intervinientes, tanto desde la zona afectada como desde instalaciones fijas, el acceso a los sistemas y redes de telecomunicaciones y sistemas de información establecidos.

Tipo I.–Este tipo de Nodo se desplegará, normalmente, para apoyar de forma puntual a los intervinientes en la zona de emergencia. Estarán asignados para garantizar las comunicaciones de las Unidades Intervinientes que están subordinadas a los Puestos de Mando Avanzados.

Asegura el enlace en todo tipo de condiciones orográficas y meteorológicas, y con disponibilidad o no de infraestructura civil, facilitando la integración limitada con sistemas de telecomunicaciones civiles y/o militares, con capacidad suficiente de movilidad, flexibilidad y captación y recepción de datos de la emergencia.

Este nodo proporciona las siguientes capacidades:

  • Telecomunicaciones vía satélite civil / militar.
  • Radiocomunicaciones (bandas HF/VHF, tierra aire, PMR, etc.).
  • Proceso de datos para albergar servicios de información, incluida la mensajería.
  • Interoperabilidad con las Fuerzas y Cuerpos de Seguridad del Estado (Sistema de Radio Digital de Emergencias del Estado – SIRDEE).

Tipo II.–Este tipo de Nodo se desplegará para apoyar a los Puestos de Mando, disponiendo de un Módulo de Telecomunicaciones, un Módulo de Servicios, un Módulo de Conducción y un Módulo de Seguimiento. No se desplegará en un asentamiento permanente, aunque posteriormente tratará de emplear infraestructura civil/militar ya existente desde un emplazamiento semipermanente. Este Nodo permitirá la coordinación con los organismos de la Administración General del Estado, autonómicos, provinciales y locales afectados. Tiene la capacidad de recibir alarmas, información de sistemas de conducción ajenos, así como de poder gestionar los servicios propios de un Nodo Secundario en situación desplegada.
Nodo Desplegable Tipo II Ampliado, que servirá de Puesto de Mando del Mando Operativo Integrado. Está organizado en los siguientes módulos:

Módulo de Telecomunicaciones Tipo II. Este módulo constituye el Nodo de Telecomunicaciones radio y satélite del Puesto de Mando del Mando Operativo Integrado. Dispone de las siguientes capacidades CIS:

  • Telecomunicaciones vía satélite (militar y civil).
  • Radiocomunicaciones (bandas HF/VHF/UHF, tierra aire, PMR, etc.).
  • Proceso de datos para albergar servicios de información, incluida la mensajería.
  • Videoconferencia.
  • Interoperabilidad con redes de telecomunicaciones civiles y militares (Red Básica de Área –RBA–, Red Radio de Combate –CNR–, SCTM, SIRDEE, etc.).

Módulo de Servicios Tipo II, con capacidad de proceso de datos para albergar servicios de información y mensajería, servicios de almacenamiento de datos y videoconferencia.

Módulo de Seguimiento Tipo II, que proporciona la capacidad de proceso de datos para los servicios de información, mensajería, videoconferencia, radiocomunicaciones y televisión.

Módulo de Conducción Tipo II. Alberga la Sala de Conducción Desplegable, con capacidades de proceso de datos para servicios de información, mensajería, videoconferencia, radiocomunicaciones y televisión.

Nodo Desplegable Tipo II Ampliado, de las mismas características que el anterior, que servirá de Puesto de Mando del General Jefe de la UME, como Dirección Operativa de la emergencia, en caso de que el JOC de esta Unidad no esté operativo.

2. Telecomunicaciones para la gestión del Comité Estatal de Coordinación.–El Comité Estatal de Coordinación, a través de la Dirección General de Protección Civil y Emergencias, debe estar relacionado permanentemente, mientras dura la situación de emergencia, además de con la Dirección Operativa, con los Centros de Coordinación Operativa Integrados constituidos en Comunidades Autónomas no afectadas. Tales comunicaciones, aunque no con los problemas derivados de la posible destrucción de instalaciones fijas, pueden verse dificultadas por sobrecargas de uso que es preciso prever y solventar mediante la utilización de un sistema de telecomunicaciones específico.

Con tal finalidad se dispone del Sistema integral de comunicaciones de emergencia vía satélite de la Dirección General de Protección Civil y Emergencias (RECOSAT).

Este sistema proporciona enlaces entre todas los Centros de Coordinación de las Delegaciones y Subdelegaciones del Gobierno entre sí y, con la Dirección General, posibilitando comunicaciones de voz, fax y acceso a las redes públicas de telefonía a través de la estación central de la Dirección General.

Esta Red proporciona una gran fiabilidad, puesto que todos sus elementos, excepto el segmento satelital, son propios de la Dirección General, lo que evita las «saturaciones» que se presentan en las redes convencionales cuando el acceso a ellas se realiza de forma masiva o se supera el dimensionamiento previsto por las diferentes operadoras. Asimismo resulta poco vulnerable a los terremotos por no depender de infraestructuras terrenas.

La Red está compuesta por:

  • Una estación central (HUB), en la sede de la Dirección General.
  • 57 Estaciones fijas, en Delegaciones, Subdelegaciones del Gobierno y Delegaciones Insulares en la Comunidad Autónoma de Canarias.

3. Red radio de emergencia.–La Red Radio de Emergencia (REMER) es un sistema de comunicaciones complementario de las otras redes disponibles. Está constituida mediante una organización estructurada en el ámbito territorial del Estado e integrada por los radioaficionados españoles que prestan su colaboración a los servicios de protección Civil de la Administración General del Estado al ser requeridos para ello, cuando circunstancias excepcionales lo justifiquen y una vez seguidos los protocolos de activación establecidos por la misma.

Son objetivos de la Red Radio de Emergencia:

  • Establecer un sistema de radiocomunicación en HF y VHF sobre la base de recursos privados que complemente los disponibles por la Administración General del Estado.b) Articular un mecanismo que permita a los radioaficionados colaborar con la Dirección General de Protección Civil y Emergencias, asumiendo voluntariamente los deberes que como ciudadanos les corresponde en los casos en que su actuación se haga necesaria.
  • Articular un mecanismo que permita a los radioaficionados colaborar con la Dirección General de Protección Civil y Emergencias, asumiendo voluntariamente los deberes que como ciudadanos les corresponde en los casos en que su actuación se haga necesaria.
  • Facilitar a los radioaficionados españoles, integrados en la Red, su colaboración a nivel operativo y la coordinaciónentre ellos, así como la incorporación, en caso necesario, de aquellos otros radioaficionados que no perteneciendo a la Red, sea necesario pedir su colaboración, actuando en esta situación la REMER como un sistema de encuadramiento funcional.

Fuente: Boletín Oficial del Estado, BOE-A-2010-5661.

Share Button

Harris AN/PRC-117F

En el reciente despliegue de tropas norteamericanas en Haití, se ha observado un uso masivo del radioteléfono de comunicaciones tácticas Harris  AN/PRC-117F. Se trata de uno de los radioteléfonos militares más avanzados existentes en el mercado para operar en las bandas de VHF y UHF, concretamente en el segmento comprendido entre 30 MHz y 512 MHz.

El radioteléfono está dotado con capacidades de comunicaciones seguras (COMSEC), transmisión segura (TRANSEC) y es compatible con varios sistemas de cifrado, tanto propietarios de Harris como estándares en las fuerzas armadas norteamericanas o en la propia OTAN.

El PRC-117F tiene tres usos principales: comunicaciones aeronáuticas en las bandas de VHF y UHF, comunicaciones vía satélite a través de la red militar UHF SATCOM e interoperabilidad con redes tácticas terrestres tipo SINCGARS.

En los primeros momentos del despliegue en Haití, una de las tareas prioritarias fue la reactivación del aeropuerto de Puerto Príncipe, severamente dañado tras el terremoto ocurrido a primeros de enero. Hasta la llegada de una torre de control transportable de la Administración Federal Aeronáutica (FAA) de Estados Unidos, las operaciones de control del tráfico aéreo (ATC) fueron asumidas por personal militar norteamericano, utilizando un puesto de campaña a pie de pista desde el que se emplearon los PRC-117 para coordinar las operaciones de despegue y aterrizaje de las aeronaves. El radioteléfono tiene capacidad de utilizar varias modulaciones, como la AM empleada en comunicaciones aeronáuticas civiles y también la capacidad de saltar en frecuencia según los protocolos Havequick I/II, para comunicaciones militares seguras.

Otras unidades militares desplegadas en la zona utilizaron el PRC-117 no solamente para coordinarse con los helicópteros encargados de las operaciones tácticas, sino también para establecer enlaces de coordinación con los puestos de control a través de comunicaciones vía satélite. El PRC-117 tiene la capacidad de utilizar, mediante antenas directivas especiales, la constelación de satélites militares geoestacionarios UHF SATCOM, a través de canales dedicados de gran ancho de banda, o a través de canales compartidos de asignación bajo demanda (DAMA), que permiten la optimización del ancho de banda mediante el acceso simultáneo de varios usuarios, empleándose para ello técnicas de multiplexación del acceso en el dominio del tiempo (TDMA). En el acceso a través de UHF SATCOM, el radioteléfono permite además la conexión a un ordenador para el envío de datos seguros, usando una modulación digital denominada HPW (High Performance Waveform), con tasas de hasta 64 kbps.

Finalmente, la compatibilidad con redes de salto en frecuencia SINCGARS, asegura la interoperabilidad con otras fuerzas terrestres del ejército norteamericano y de otros países de la OTAN.

El PRC-117 puede operar con baterías o instalado en vehículos con un amplificador y antenas de alta ganancia. En el primer caso, tiene una potencia máxima de transmisión de entre 10 W y 20 W, dependiendo de la banda de trabajo.

Pulse en las imágenes para verlas a tamaño completo.

Fuente: Harris Corporation.

Share Button

El sistema de referencia geodésico oficial en España

El Real Decreto 1071/2007, de 27 de julio regula el sistema de referencia geodésico sobre el que se debe compilar toda la información geográfica y cartografía oficial, permitiendo una completa integración de la información geográfica y de la cartografía oficial española con la de otros países europeos y con los sistemas de navegación.

En el año 1852 comenzaron los trabajos de la Red Geodésica Fundamental por la Comisión del Mapa de España, que tenían que servir como base para la formación del Mapa Nacional a escala 1:50.000. Se adoptó como elipsoide de referencia el de Struve, datum Madrid y origen de longitud el meridiano de Madrid (Observatorio Astronómico Nacional). La proyección cartográfica elegida fue la poliédrica, lo que establecía un sistema de referencia local adaptado a la Península Ibérica, sobre el cual se realizaron las primeras series cartográficas.

Posteriormente, y hasta el año 1934, el Instituto Geográfico procedió a la densificación de la Red Fundamental, con las redes de segundo y tercer orden. Las observaciones geodésicas realizadas, junto con las observaciones geodésicas del resto de los países europeos, dieron lugar a la creación del sistema de referencia ED50 cuyo elipsoide es el internacional de Hayford 1924, datum en Potsdam, Alemania, 1950, y el meridiano origen de longitudes el de Greenwich, sistema de referencia vigente actualmente en España desde el año 1970 junto con el sistema de representación cartográfico UTM, Universal Transversa Mercator, conforme al Decreto 2303/1970, de 16 de julio, y sobre los que actualmente se desarrolla toda la cartografía básica y derivada oficial en España.

Desde el lanzamiento de los primeros satélites artificiales para los primitivos sistemas de navegación y posicionamiento, TRANSIT, LORAN, etc., hasta llegar a los sistemas de navegación por satélite (GNSS), como el GPS, el GLONASS y el futuro sistema europeo GALILEO, han ido desarrollándose los modernos sistemas de referencia geodésicos globales, que permiten alta precisión y homogeneidad para el posicionamiento y la navegación.

El sistema de referencia ETRS89  European Terrestrial Reference System 1989), Sistema de Referencia Terrestre Europeo 1989, ligado a la parte estable de la placa continental europea, es consistente con los modernos sistemas de navegación por satélite GPS, GLONASS y el europeo GALILEO. Su origen se remonta a la resolución de 1990 adoptada por EUREF (Subcomisión de la Asociación Internacional de Geodesia, AIG, para el Marco de Referencia Europeo) y trasladada a la Comisión Europea en 1999, por lo que está siendo adoptado sucesivamente por todos los países europeos. Por otra parte, en 1995 la compensación de la red geodésica de Canarias, dentro del marco de la Red Geodésica Nacional por Técnicas Espaciales, REGENTE, supuso la materialización del sistema denominado REGCAN95, completamente compatible con el sistema ETRS89.

El objeto de este Real Decreto es la adopción en España del sistema de referencia geodésico global ETRS89, sustituyendo al sistema geodésico de referencia regional ED50 sobre el que actualmente se está compilando toda la cartografía oficial en el ámbito de la Península Ibérica y las Islas Baleares, y el sistema REGCAN95 en el ámbito de las Islas Canarias, permitiendo una completa integración de la cartografía oficial española con los sistemas de navegación y la cartografía de otros países europeos. Asimismo, y en correspondencia con lo anterior, también se dispone la adopción de los sistemas de representación de coordenadas que deben utilizarse para compilar y publicar la cartografía e información geográfica oficial según sus características.

Fuente: Real Decreto 1071/2007, de 27 de julio

Share Button